Computer Science 294 Lecture 3 Notes

Daniel Raban

January 24, 2023

1 Influences, Effects, and Social Choice

1.1 Examples of decision rules

When studying social choice, we think of a boolean function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}^{n}$ as a voting rule. We think of the input in $\{ \pm 1\}^{n}$ as n votes and the output in $\{ \pm 1\}$ as a collective decision. This corresponds to voting for an election between two candidates.

Example 1.1. For odd n, the Majority function $\operatorname{MAJ}_{n}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ given by

$$
\operatorname{MAJ}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{sgn}\left(x_{1}+\cdots+x_{n}\right)
$$

is one of the most natural voting rules.
Example 1.2. We can also require a unanimous vote to pass a decision. If we think of -1 as true and +1 as false, then this is the And function AND $_{n}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ given by

$$
\operatorname{AND}_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}-1 & \text { if } x=(-1, \ldots,-1) \\ +1 & \text { otherwise }\end{cases}
$$

Example 1.3. Alternatively, we can have the Or function $\operatorname{Or}_{n}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ given by

$$
\operatorname{Or}_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}+1 & \text { if } x=(+1, \ldots,+1) \\ -1 & \text { otherwise }\end{cases}
$$

Example 1.4. The existence of a dictator corresponds to the character functions $\chi_{\{i\}}$: $\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ which give $\chi_{i}(x)=x_{i}$.

We can generalize this idea of dictators to the situation where more than 1 person has power over the collective decision.

Definition 1.1. A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a k-junta if f "depends" on at most k of its input coordinates. Formally, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ such that $f(x)=g\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)$ for some boolean function $g:\{ \pm 1\}^{k} \rightarrow\{ \pm 1\}$.

Example 1.5. The Majority, And, and Or functions are not juntas, but the character $\chi_{\{i\}}$ is a 1-junta.

Definition 1.2. A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is a linear threshold function (LTF) (or a weighted majority) if

$$
f(x)=\operatorname{sgn}\left(a_{0}+a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right), \quad a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

The constant a_{0} allows our decision to have an initial bias. All our examples so far are LTFs.

Example 1.6. The Or function is an LTF with $a_{0}=-(n-1 / 2)$ and $a_{1}=a_{2}=\cdots=1$.
All monotone, symmetric functions are LTFs. This corresponds to the case where $a_{1}=a_{2}=\cdots=a_{n}=1$.

Example 1.7. The Tribes function is the Or of s many tribes of size w; it is an Or of s Ands:

$$
\operatorname{Tribes}_{w, s}(x)=\operatorname{Or}\left(\operatorname{And}\left(x_{1}, \ldots, x_{w}\right), \ldots, \operatorname{And}\left(x_{w s-w+1}, \ldots, x_{w s}\right)\right)
$$

The parameters s and w are referred to as the size and width, respectively. Usually, we pick $s \approx 2^{w} \cdot \ln 2$, and then

$$
\mathbb{P}_{X \sim\{ \pm 1\}^{w s}}\left(\operatorname{Tribes}_{w, s}(X)=\text { True }\right) \approx \frac{1}{2}
$$

In general,

$$
\mathbb{P}(\operatorname{Tribes}(X)=\text { False })=\left(1-2^{-w}\right)^{s}
$$

1.2 Desirable properties of voting schemes

Here are some properties we may want our decision rules to have.
Definition 1.3. We say that f is monotone if for all vectors $x \leq y$ (pointwise), $f(x) \leq$ $f(y)$.

Definition 1.4. We say that f is symmetric if $f(x)=f\left(x^{\pi}\right)$ for all $x \in\{ \pm 1\}^{n}$ and permutations π, where $x^{\pi}=\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$.
Definition 1.5. We say that f is an odd function if $f(-x)=-f(x)$.
This corresponds to a kind of symmetry between the outcomes. Let's also introduce a weak form of symmetry.

Definition 1.6. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$. The symmetry group of f is Aut (f), the group of permutations $\pi \in S_{n}$ such that $f(x)=f\left(x^{\pi}\right)$ for all x.

The voting rule f is symmetric if and only if $\operatorname{Aut}(f)=S_{n}$.
Definition 1.7. We say that f is transitive symmetric if for all i, j, there exists a $\pi \in \operatorname{Aut}(f)$ such that $\pi(i)=j$.

Example 1.8. The Tribes function is transitive symmetric but not symmetric.
Definition 1.8. We say that f is unanimous if $f(b, \ldots, b)=b$ for all $b \in\{ \pm 1\}$.

	Monotone	Symmetric	Odd	Transitive Symmetric	Unanimous
Tribes	\checkmark			\checkmark	\checkmark
Maj	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Or	\checkmark	\checkmark		\checkmark	\checkmark
And	\checkmark	\checkmark		\checkmark	\checkmark
Dictatorship	\checkmark		\checkmark		\checkmark

Remark 1.1. You can show that the Majority function is the only function which satisfies all these properties.

1.3 The influence of a decision rule

We can graph the Majority function on 3 variables:

Each edge corresponds to flipping only 1 bit in the input. The vertices where MAJ_{3} outputs +1 and the edges that change the outcome are marked in red.

Definition 1.9. We say that coordinate i is pivotal (or sensitive) for $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}^{n}$ on input x if $f(x) \neq f\left(x^{\oplus i}\right)$, where $x^{\oplus i}=\left(x_{1}, \ldots, x_{i+1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)$.

Definition 1.10. The influence of coordinate i on $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is the probability that i is pivotal on a uniformly random input:

$$
\operatorname{Inf}_{i}(d)=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X) \neq f\left(X^{\oplus i}\right)\right)
$$

We potentially want all these influences to be large so that voters feel that their vote matters.

Proposition 1.1.

$$
\begin{aligned}
\operatorname{Inf}_{i}(f) & =\frac{2 \cdot \# \text { sensitive edges in direction } i}{\# \text { vertices }} \\
& =\frac{\# \text { sensitive edges in direction } i}{\# \text { edges in direction } i}
\end{aligned}
$$

Example 1.9. In a dictatorship with $\chi_{i}(x)=x_{i}, \operatorname{Inf}_{i}\left(\chi_{i}\right)=1$ and $\operatorname{Inf}_{j}\left(\chi_{i}\right)=0$ for all $j \neq i$.

Example 1.10. For the Majority function with 3 voters, $\operatorname{Inf}_{i}\left(\mathrm{MAJ}_{3}\right)=\frac{2}{4}=\frac{1}{2}$ for all i.
Example 1.11. In general, for odd n,

$$
\operatorname{Inf}_{1}\left(\operatorname{MAJ}_{n}\right)=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(X_{2}+\cdots+X_{n}=0\right)=\frac{\binom{n-1}{(n-1) / 2}}{2^{n-1}}
$$

By Stirling's formula, this looks like $\sqrt{2 / \pi} \cdot 1 / \sqrt{n}$ as $n \rightarrow \infty$.

1.4 The effect of a decision rule

Definition 1.11. The effect of coordinate i for $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is

$$
\operatorname{Eff}_{i}(f)=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X)=1 \mid X_{i}=1\right)-\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X)=1 \mid X_{i}=-1\right)
$$

Remark 1.2. We have already shown that $\operatorname{Eff}_{i}(f)=\widehat{f}(\{i\})=\left\langle f, \chi_{i}\right\rangle$.
Here is an example that illustrates the differences between effect and influence.
Example 1.12. The Parity function Parity $_{n}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is given by

$$
\operatorname{Parity}_{n}(x)=\prod_{i \in[n]} x_{i} .
$$

The influence on f is $\operatorname{Inf}_{i}(f)=1$ for each voter i. This voting rule maximizes influence for everyone! On the other hand, the effect of voter i on f is $\operatorname{Eff}_{i}(f)=0$ for all i.

1.5 Derivatives of boolean functions

Next, we want to derive a nice Fourier representation for the influence, like we already have for the effect. Along the way, we will define a derivative.

Definition 1.12. The derivative operator D_{i} maps a function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ to the function $D_{i} f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ defined by

$$
D_{i} f(x)=\frac{f\left(x^{(i \mapsto 1)}\right)-f\left(x^{(i \mapsto-1)}\right)}{2},
$$

where $x^{(i \mapsto \pm 1)}=\left(x_{1}, \ldots, x_{i-1}, \pm 1, x_{i+1}, \ldots, x_{n}\right)$.
Remark 1.3. Even though $D_{i} f$ ignores the i-th coordinate, we will still think of it as a function of n variables.

Note that

$$
D_{i} f(x)= \begin{cases} \pm 1 & \text { if } i \text { is pivotal on } x \\ 0 & \text { otherwise }\end{cases}
$$

so that

$$
\left(D_{i} f(x)\right)^{2}=\mathbb{1}_{\{i \text {-th corrdinate is pivotal on } x\}} .
$$

This lets us express the influence as

$$
\operatorname{Inf}_{i}(f)=\mathbb{E}_{X}\left[\left(D_{i} f(X)\right)^{2}\right]
$$

Similarly,

$$
\operatorname{Eff}_{i}(f)=\mathbb{E}_{X}\left[D_{i} f(X)\right]
$$

Next time, we will use this to derive a Fourier representation for the influence.

